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Abstract

We study the transfer of optimization problems across surjective fac-
torizations of maps. Working in the general setting of posets, we show that
extrema of a function J can be equivalently expressed after reparametriza-
tion through a surjective map and a section. We also give a factorization
form where J decomposes as H o & with ® surjective. These theorems
show that optimization can often be reduced to a smaller or simpler search
domain without altering the extremal values.

1 General Setting
Let (X, <) be a partially ordered set. For any subset A C X, we write
infA, supd

for the infimum and supremum in X, when they exist. When X is a lattice,
these always exist; when X is totally ordered, they coincide with minima and
maxima.

Given any function J: U — X from a set U into a poset, we are interested in
computing inf J(U) and sup J(U). The following theorems describe when this
task can be transferred to another set Y via surjective maps.

2 Main Theorems

Theorem 1 (Transfer via section). Let U, X,Y be sets with (X, <) a poset.
Suppose we have

JU—=X, G:X=Y S§5Y-—=>X,
satisfying:
(i) GoJ: U —Y is surjective,
(ii) So G =idx.



Then, whenever the infimum and supremum exist,

inf J(u) = inf S(y), sup J(u) = sup S(y).

Jnf J(u) = inf S(y),  sup J(u) sup (v)
Proof. Foreachu € U, S(G(J(u))) = J(u). Since GoJ is surjective, every y € Y’
has the form y = G(J(u)) for some u. Thus {J(u):u e U} ={S(y) :y € Y}.
Taking infima and suprema yields the result. O

Theorem 2 (Factorization form). Let U and Y be sets, (X, <) a poset.
Suppose there exists a surjective map ®: U — Y and a map H: Y — X
such that
J=Hod.

Then
inf J(u) = inf H(y), sup J(u) = sup H(y).
[nf J(u) = inf Hy),  sup J(u) sup (v)
Proof. By construction, J(U) = H(®(U)). Since ® is surjective, ®(U) =Y, so
J(U) = H(Y). Taking infima and suprema over these sets gives the claim. O

Remark 1. Theorem 1 and Theorem 2 are equivalent: a section S as in The-
orem 1 gives the factorization in Theorem 2 by setting ® = GoJ and H = S.
Conversely, a factorization as in Theorem 2 can be encoded in the form of The-
orem 1 by taking Y as the codomain of ® and defining G and S accordingly.

3 Examples

Example 1 (Binning in optimization). Let U be a finite set and J: U — R a
cost function. Fix a bin width A > 0 and define

G(e) = [£], ceR.

This partitions R into bins indexed by integers.
For each bin y, define a representative
S(y) = argmin J(u).
uclU
G(J(w)=y
Then

f}g}} J(u) = 2&1{} J(S(y)).

This shows that optimization can be performed by searching one representative
per bin.

Example 2 (Quotienting symmetries). Suppose a group G acts on U and the
cost function J: U — R is invariant under the action. Then J factors through
the quotient map 7: U — U/G. Writing H ([u]) = J(u), we obtain

min J(u) = oo H ([ul),

so the optimization can be reduced to orbit representatives.



4 Conclusion

We have shown that optimization problems can be transferred across surjective
factorizations without changing the extremal values. This principle holds in the
general setting of posets, unifying several practical strategies such as binning,
quotienting by symmetries, or reparametrization. In applications, this allows
optimization to be performed in smaller or more structured domains while guar-
anteeing correctness of extremal values.



