Closed Systems: a First-Order Formalization

Abstract

A compact first-order presentation of *closed systems*. Two-sorted signature. Functions are first-class objects. Composition and application axioms are stated. Forward-closure, orbits, generating sets and basic algebraic facts are given with short proofs. Remarks explain how to encode the generated monoid inside FOL.

1 Overview and conventions

We work in many-sorted first-order logic with two sorts: Elem (elements) and Func (unary endomaps of Elem). Application and composition are primitive. Predicates of the form S(x) mean "x belongs to the definable subset $S\subseteq \text{Elem}$ ". Notationally we sometimes write $f\circ x$ or f(x) for application. The family Φ is a distinguished set of generators; $\Phi(f)$ is the predicate " $f\in\Phi$ ".

2 Signature and axioms

Definition 2.1 (Signature). The language contains:

- sorts Elem and Func,
- an application operator App : Func \times Elem \rightarrow Elem,
- a composition operator Comp : Func \times Func \rightarrow Func,
- $a \ constant \ id \in Func.$

Definition 2.2 (Axioms). The following axioms hold:

$$\begin{aligned} & \mathsf{App}(\mathsf{id},x) = x, \\ & \mathsf{App}(\mathsf{Comp}(f,g),x) = \mathsf{App}(f,\mathsf{App}(g,x)), \\ & \mathsf{Comp}(f,\mathsf{id}) = f = \mathsf{Comp}(\mathsf{id},f), \\ & \mathsf{Comp}(f,\mathsf{Comp}(g,h)) = \mathsf{Comp}(\mathsf{Comp}(f,g),h). \end{aligned}$$

Thus, (Func, Comp, id) forms a monoid acting on Elem.

3 Forward-closure and orbits

Definition 3.1. For a unary predicate $S(\cdot)$ and a function variable $\phi \in \mathsf{Func}$ define

$$\mathbf{Fch}_{\phi}(S) : \iff \forall x \in \mathsf{Elem} (S(x) \land \Phi(\phi) \Rightarrow S(\phi \circ x)).$$

Write $\mathbf{Fch}_{\Phi}(S)$ for $\forall \phi \in \mathsf{Func}\ (\Phi(\phi) \Rightarrow \mathbf{Fch}_{\phi}(S))$.

Definition 3.2. Informally the monoid generated by Φ is

$$\langle \Phi \rangle = \{ \phi_n \circ \dots \circ \phi_1 : n \geq 0, \ \phi_i \in \Phi \},$$

with the convention n=0 yields id. For $x \in \mathsf{Elem}$ the forward-orbit is

$$\mathcal{O}(x) := \{ \psi \circ x : \psi \in \langle \Phi \rangle \}.$$

Proposition 3.1 (Orbit characterization). $\mathbf{Fch}_{\Phi}(S)$ holds iff for every x with S(x) we have $\mathcal{O}(x) \subseteq S$.

Proof. If $\mathbf{Fch}_{\Phi}(S)$ then every generator sends points of S back to S. By induction on word length and action compatibility (A3) every element of $\langle \Phi \rangle$ preserves S. Conversely, if each orbit of $x \in S$ lies in S then in particular images by generators lie in S, so $\mathbf{Fch}_{\Phi}(S)$.

4 Set operations

Here, we treat definable subsets as predicates. Propositions like $A \cup B$, $A \cap B$, and $A \subseteq B$ are defined as, respectively $\forall x \in \mathsf{Elem} : A(x) \vee B(x)$, $\forall x \in \mathsf{Elem} : A(x) \wedge B(x)$, and $\forall x \in \mathsf{Elem} : A(x) \Longrightarrow B(x)$.

Proposition 4.1. If $\mathbf{Fch}_{\Phi}(A)$ and $\mathbf{Fch}_{\Phi}(B)$ then, $\mathbf{Fch}_{\Phi}(A \cup B)$ and $\mathbf{Fch}_{\Phi}(A \cap B)$.

Proof. Union: let x satisfy $A(x) \vee B(x)$. For any $\phi \in \Phi$ apply closure in the piece containing x. Intersection: let x satisfy $A(x) \wedge B(x)$; apply both closures.

Converse failure. The converses need not hold. Example: Elem = $\{a,b\}$, Func = $\{id, \phi\}$ with $\phi \circ a = b$, $\phi \circ b = b$, and $\Phi(\phi)$ true. Put $A = \{a\}$, $B = \{b\}$. Then $A \cup B$ is closed but A is not.

5 Closure operator and generators

Definition 5.1. For $T \subseteq \mathsf{Elem}\ define$

$$\operatorname{Fcl}_{\Phi}(T) := \{ \psi \circ x : x \in T, \ \psi \in \langle \Phi \rangle \}.$$

Proposition 5.1. $\operatorname{Fcl}_{\Phi}: \mathcal{P}(\mathsf{Elem}) \to \mathcal{P}(\mathsf{Elem})$ is a closure operator: it is extensive, monotone and idempotent.

Proof. Extensive: $\mathsf{id} \circ x = x$. Monotone: if $T \subseteq U$ then orbits from T are in those from U. Idempotent: $\langle \Phi \rangle$ is a monoid so further closure adds nothing new.

Definition 5.2 (Generating set / minimal basis). A set $B \subseteq S$ generates forward-closed S when $\operatorname{Fcl}_{\Phi}(B) = S$. A minimal generating set meets each orbit contained in S in at least one representative. Choosing one representative per orbit yields a (generally non-unique) minimal generating set.

6 Morphisms and equivariance

Definition 6.1. Given systems (X, Φ) and (Y, Ψ) , a map $f: X \to Y$ is a morphism if there exists $\widehat{f}: \mathsf{Func}_X \to \mathsf{Func}_Y$ such that

$$\forall g \in \mathsf{Func}_X, \ \forall x \in X: \quad f(g \circ x) = \widehat{f}(g) \circ f(x).$$

If f and \hat{f} are bijections and the relation holds both ways then f is a homeomorphism analogue.

Proposition 6.1. Morphisms send forward-closed sets to forward-closed sets; preimages are forward-closed under the dual condition.

Proof. Standard equivariance argument. Fix $A \subseteq X$ closed. If y = f(x) then for any generator in the target find the associating source map and use A closedness.

7 Examples and short remarks

- If $\Phi = \{id\}$ every subset is forward-closed.
- If Φ is a single shift on \mathbb{Z} or \mathbb{N} orbits are rays and minimal generators correspond to left endpoints.
- Minimal generating sets exist by picking one representative per orbit but are not unique.